Solving Nonlinear Differential Algebraic Equations by an Implicit GL(n, R) Lie-Group Method

نویسنده

  • Chein-Shan Liu
چکیده

Usually, n is larger than m. When m = 0, the DAEs reduce to the ODEs. There are many numerical methods used to solve ODEs, but only a few is used to solve DAEs [1–5]. A lot of engineering problems are modelled as a combination of ODEs and NAEs, which are abbreviated as differential algebraic equations (DAEs). The DAEs are both numerically and analytically difficult than the ODEs. Recently, there were some new methods to solve DAEs, for example, Adomian decomposition method [6, 7], variational iterative method [8], and pseudospectral method [9].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sine-Cosine Wavelet and Its Application in the Optimal Control of Nonlinear Systems with Constraint

In this paper, an optimal control of quadratic performance index with nonlinear constrained is presented. The sine-cosine wavelet operational matrix of integration and product matrix are introduced and applied to reduce nonlinear differential equations to the nonlinear algebraic equations. Then, the Newton-Raphson method is used for solving these sets of algebraic equations. To present ability ...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

Direct method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equations by block-pulse functions

In this paper, an effective numerical method is introduced for the treatment of nonlinear two-dimensional Volterra-Fredholm integro-differential equations. Here, we use the so-called two-dimensional block-pulse functions.First, the two-dimensional block-pulse operational matrix of integration and differentiation has been presented. Then, by using this matrices, the nonlinear two-dimensional Vol...

متن کامل

A Chebyshev functions method for solving linear and nonlinear fractional differential equations based on Hilfer fractional derivative

The theory of derivatives and integrals of fractional in fractional calculus have found enormousapplications in mathematics, physics and engineering so for that reason we need an efficient and accurate computational method for the solution of fractional differential equations. This paper presents a numerical method for solving a class of linear and nonlinear multi-order fractional differential ...

متن کامل

Solving System of Nonlinear Equations by using a New Three-Step Method

In this paper‎, ‎we suggest a fifth order convergence three-step method for solving system of nonlinear equations‎. ‎Each iteration of the method requires two function evaluations‎, ‎two first Fr'{e}chet derivative evaluations and two matrix inversions‎. ‎Hence‎, ‎the efficiency index is $5^{1/({2n+4n^{2}+frac{4}{3}n^{3}})}$‎, ‎which is better than that of other three-step methods‎. ‎The advant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2013  شماره 

صفحات  -

تاریخ انتشار 2013